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A demonstration of Alfvbn waves 
Part 1. Generation of standing waves 

By ANTONY JAMESON 
Trinity Hall, Cambridge 

(Received 10 July 1963 and in revised form 29 February 1964) 

In this paper the equations for Alfvh waves are examined and conditions 
necessary for the occurrence of resonance are determined. An experiment 
using liquid sodium inside a torus is described. Waves were generated by means 
of alternating current supplied to a coil around the torus. A strong resonance 
was observed at the fundamental frequency, and a weak resonance at three 
times this frequency. At the fundamental resonance the alternating magnetic 
field attained magnitudes more than 9 times the magnitude of the field that 
would have been generated in free space by the exciting current. The results 
were in good agreement with prediction. 

1. Introduction 
Previous experiments to demonstrate Alfvkn waves in liquids (Lundquist 

1949; Lehnert 1954) have produced rather limited effects because of heavy damp- 
ing. Solutions of the equations for Alfvdn waves, however, indicate that it should 
be possible to produce strong resonant effects in apparatus of manageable size, 
provided that the fluid region has the right shape. A further experiment to 
demonstrate these waves in sodium has therefore been undertaken at the 
Cambridge University Engineering Department. 

2. Theory 
Neglecting the electrostatic force qE, the convection current pu, and the dis- 

placement current e( aE/at), the equations for an incompressible conducting fluid 
of electric diffusivity h = l / p ~  and viscous diffusivity v are, in the usual 
notation, with m.k.s. units, 

V x E = - aB/at, V x B = pj, 

V.B = 0, phj = E + u x B ,  
au/at+u.Vu=p-ljxB-p--1Vp+vV2u, V . u  = 0. 

These lead to the equations 

where 
33 

( 2 )  
aB/at + U .  VB = B . VU + hV2B, 

au/at + u . VU = B . VB/pp - V P / p  + v V ~ U ,  
P =p+B.B/2p.  

Fluid Mech. 19 
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Consider now the case of a small disturbance in a fluid which is otherwise station- 
ary in a uniform fixed magnetic field in, say, the z-direction. Then the total 
magnetic field can be expressed as B = (,up)* (h,+ h), where the factor (,up)* 
is introduced to  give h, and h the dimensions of velocity, h, is a fixed vector in 
the z-direction of magnitude h,, and h and u < h,. If terms involving squares 
or products of h and u are neglected, equations ( 2 )  become 

(3) I (slat - A V ~ )  h = ho(aqaz), 
(a /&? - vV2) u = h,(ah/&) - VP/p. 

Outside the region of disturbance P is constant; inside it taking the divergence 
of these equations gives V2P  = 0. But a solution of Laplace's equation which is 
constant outside a bounded region is constant inside it also. Therefore P is 
constant throughout the fluid. With VP/p thus eliminated, equations (3) are the 
equations for Alfv6n waves. They indicate that when h and v are small enough 
waves will travel at a speed h, from a point of disturbance either way along 
the stationary magnetic field. 

Suppose now that the fluid is enclosed in a container with cylindrical symmetry 
about the z-axis. Then one can try to excite a mode in which the disturbances are 
purely circumferential. This is the simplest possible mode in a fluid which does 
not extend to infinity in some direction. Expressed in terms of cylindrical 
co-ordinates z, r,  8, the total magnetic and velocity fields will be of the form 

B = (,up)*{h,, 0, h(z, r ) }  and u = { O , O ,  u(z, r ) } .  

Equations (3) now give 

If the excitation is steady, standing waves will be produced. For these it is 
possible to put h/ho = Heiwt, ulh, = Ueiwt. 
To make possible the occurrence of resonance the depth of the container in the 
z-direction should be everywhere the same, so that the ratio of depth to wave- 
length is the same. The container should therefore be a cylinder or a torus of 
rectangular section. Henceforth the case of a torus will be treated: the case of a 
cylinder can be regarded as a special case for which the inner wall is a t  r = 0. 
It is convenient to take the origin at the centre of a container of depth Zd, 
and to introduce the dimensionless quantities, 

Z = z/d,  R = r / d ,  T = hot/& !2 = ud/h,, A = h/h,d, N = v/h,d. 

The walls of the container will then be at 2 = k 1, R = R, and R = R, (figure l), 
and equations (4) rewritten in terms of dimensionless quantities become 
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A is the reciprocal of the number introduced by Lundquist (Lundquist 1949) 
as a measure of the damping to be expected. 

To excite standing waves it is necessary to establish an oscillating circumferen- 
tial component of either magnetic field or velocity on a surface crossed by the 
stationary magnetic field. A convenient method of exciting waves magnetically 
in a torus is to supply alternating current to a winding around the torus. Then if 
the current in the winding approximates to a current sheet the boundary con- 
dition can be represented as 

H=AIR,  U =  0 at Z =  f1 ,  R=R,,  R=R,.  (6) 

Disturbances 
\ 

- 1  

FIGURE 1. Co-ordinate system used. 

The corresponding method of exciting waves mechanically is to oscillate the 
complete container. Then if the walls are non-conducting the boundary condition 
can be represented as 

H = 0,  U = AR a t  Z = + 1 ,  R =  R,, R = R,. (6') 
Since there is no longer any need to allow for a current circuit the container 
need not be a torus but could be a cylinder. Other methods of excitation, both 
magnetic and mechanical, could be devised. For example, current could be 
passed radially through the fluid between a central and a circumferential 
electrode; or just one face at Z = + 1, say, could be oscillated. However, con- 
ditions (6) and (6') will be taken as typical of magnetic and mechanical excitation. 

In either case the solution can be obtained with the aid of expansions in the set 
of eigenfunctions 

€(a, R) = J,(W KfnR,) -Y,(nR) J,(nR,), 

satisfying 

where n takes the values n,, n2, . . . , such that 
€(n, R,) = €(n, R,) = 0. 

B < (2E/n) n, < B + $, 
In fact, where E = +(R2 - R,) is the ratio of width to depth of the section, 

33-2 
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(2E!n) n, increasing from e towards e + as R,IR, decreases from 1 to 0. Consider 
the case of magnetic excitation. An expansion in the eigenfunctions &(n, R) 
can only represent a function which vanishes at  R = R, and R = R,. One must 
therefore put 

where K is any suitably smooth function which satisfies the boundary condition 
(6) on R = R, and R = R,, and find the expansions of G and U .  According to 
condition (6) it suffices to take K = A/R. Then K represents the field that would 
be produced in free space, and 

H = K + G ,  

(&+$&-$) K = aK = 0, 

so that equations (5) give 

Now expand K ,  G and U in the form 

X ( Z ,  R)  = 

Then all conditions are satisfied if for each value n,, n2, . . ., 

x(n,, Z) b(n,, R). 
,=1 

8 = u = O  when Z = _ + l ,  

and these equations determine B(n, Z) and B(n, Z) in terms of if(n). In  fact 

and (c, cosk, Z/sin k,) - (c2 cos k,Z/sin k,) 
___ - 1) i) cot k1- ~2 cot k, 

(sin k, Z/sin k,) - (sin k, Z/sin k2)  
c, cot k, - c2 cot k, 

where a = iQ/(iQ +An,), 

k2, = -a+(a2-P)3, k; = -a-(a2-/?)4, 
a = (1 +A(iQ+Nn2)+N(iQ+An2)}/2AN, 
P = (iQ+Anz) (iQ+Nn2)/AN, 

c2 - - iQ+A(n2+@) 
iQ+N(nz-' 

c; = - iQ+A(n2+kk2,) 
iQ + N(n2+ k2,) ' 1 -  
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The solution for mechanical excitation is obtained by the same method. In  this 
case one must put 

where now K is any suitably smooth function satisfying condition (6'). Taking 

K = AR, 

U = K + V ,  

again ($+;&-$) K = aK az = 0. 

The equations, and consequently their solution, are then the same as before 
with G and U replaced by V and H ,  A and N exchanged, and new values x(n). 

To design an experiment one must obtain an idea of the overall form of these 
solutions. Take the case of magnetic excitation. As n -+ 00, a and g-+ 0. An 
indication is given by the earlier terms for which n is small. Considering these 
only, suppose that A and N are so small that 

AQ and N Q <  1, An2/8 and Nnz/Q< 1. 

In this case la1 1, arga A An2/Q. 

Also 1.1 l/AN, 1/31 QWN, l ay9  1/31, 
k2 1 2- - - /3/2a, k; -2a, 

whence lkll Q, arg k, --I &(A + N) (Q +n2/Q), 

lkzl l/(AN)+, argk,-&n -+ (A+N)Q,  

lCll A 1, 

Ic, I s (N/A)i = (v /A)) ,  

arg c1 + Qn 
arg c, + +n e - &(A - N )  Q. 

+(A - N )  Q, 

Since k, is mainly real, and k, is mainly imaginary, only cosk,Z and sinklZ 
represent waves penetrating to the centre: cos k,Z and sin k ,  Z represent bound- 
ary layers dying away rapidly from the end walls at Z = L- 1. For large imaginary 
k,, cot k, - i .  On the central plane Z = 0, where the boundary-layer part is 
negligible, equations (7)  thus give 

C1 - l ) ,  U = O .  ( c1 cos k, + ic, sin k1 
j J & Z  

If Y < A, so that ( c 2 (  < (clI, a(n, 2) will be at a maximum for each value n, 
and consequently there will be resonances at  which H is a t  maximum, when 

Q = +n, $7r, ..., 
cosk, _+i+(A+N)(Q2+n2), sink, + 1 .  

Then on the central plane 

jJ 1 
, + 1 =  _+ 
K +(A + N )  (R2 +n2) + ( v /A) i '  

/HI 9 Knear the centre of the section if, at least for the first eigenvalue 
n,, 9 x. This is the case if both 

Y < A and (A+ N )  (Qz+ni) < 1. (9, 10) 
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The performance will be limited by whichever is larger of (v/h)* and 

$(A + N) (0, +n:). 

Condition (9) is the condition that the wave part of the solution shall be domi- 
nant over the boundary-layer part. If v > h the wave part will be swamped 
by the boundary-layer part and H will not exceed K even when A and N -+ 0. 
Condition (10) is the condition that there will be a small amount of damping. 
When damping is the factor limiting the performance, the geometry should 
be designed so that n, does not appreciably exceed 0:  otherwise IHI will be 
much smaller than the limit determined by (A + N) Q. Now n, is close to n/2E. 
There will be a penalty at  the resonance for which 0 = +Sn, therefore, if the 
ratio E of width to depth of the section is much less than I/&. This ratio is ex- 
tremely important. The ratio R,/R,, on the other hand, affects only the small 
difference between n, and n/2E, and is relatively unimportant. 

Equation (8) also gives an indication of the spatial variation of H at resonance. 
Associated with the variation of H with 2 there will be radial electric currents. 
These will be blocked by the side walls at R = R,, R = A,, and forced to bend 
parallel to the axis. In  the absence of longitudinal currents produced in this 
way H would vary radially as 113.  Now if B(n, Z,,)/E(n) is nearly independent 
of n as far as the sth term, H will approach a multiple of K on the plane 2 = Z,, 
and will therefore vary approximately as 1/R, in the region which is more than a 
distance about l/ne times the half depth from each side wall. Within this distance 
of each side wall there will be a boundary region in which longitudinal currents 
will be important and H will vary rapidly with R. According to equation (8), 
at resonance is nearly independent of n when n < $2, so on the central 
plane the boundary regions then extend a distance about l/0 times the half 
depth from each side wall. At the resonance for which Q = ins the whole section 
will be within the boundary regions if E is much less than S-l, and it is then that 
there is a loss of performance. Off resonance by a sufficient amount T, still small, 
cos El G & T & i$(R + N) ( Q2 + n2), sin k, G k 1, and a/E is nearly independent 
of n until a higher value of n at which (A + N) ( R2 + n2) N T. The boundary regions 
will therefore benarrower. Thereis thus anexpansion of these regions at resonance. 
Consequently the resistive losses associated with the longitudinal currents are 
smaller and the damping is less than it might have been. 

These effects are illustrated by figures 2 and 3, in which the results of numerical 
calculations are presented for magnetically excited waves when A = 0.1, 
N = 0,  so that v / h  = 0, and damping is the limiting factor. In all these calcula- 
tions a computer was used to sum the first 20 non-vanishing terms of the series. 
Figure 2 shows the effect of changing R,/R, when E is held fixed equal to 1, with 
a constant inner boundary value H = 1,  and a varying outer boundary value 
H = R,/R2. It is convenient to take as a criterion of performance the ratio 
I H I / K  of the field produced in the fluid to the field produced in free space with the 
same excitation. The point a t  which \HI is greatest is displaced inwards as 
RJR, decreases, but I H I / K  is not much affected: at the centre point of the section 
lH( /K decreases from 4.9 to 4-6 as R,IR, decreases from 1 to 3. Figure 3 shows the 
effect of changing E in the limiting case when R,/R, = 1 and the torus is replaced 
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by an infinite straight channel. The importance of width is obvious. Lehnert's 
experiment (Lehnert 1954) suffered from too small a width. 

If the first term c(n,, 2) of the expansion is taken as a sufficient indication of 
H ,  it is possible to determine approximately the ratio E for which the performance 
at the first resonance will be at a maximum with a given volume of fluid. A and 

0 1 
R-Rl 

2 

FIGURE 2 .  The effect of the ratio RJR,: profiles of H across the central plane 2 = 0 
at the first resonance for different values of RJR, when E = 1. Inner boundary value 
H = 1. A = 0.1. N = 0. 

N vary as I / d ,  where d is the half depth. The volume of fluid in a torus with a 
given ratio of inner to outer radius varies as d3E2, so, if this volume is fixed, 
A and N vary as EP. Also n1 is close to n/2E. At the first resonance, therefore, for 
which Q = in, if (v/h)* is small enough to be neglected, g(n,, O)/R(n,) + 1 varies 
approximately as l/(EP+ E-*) and is greatest when E is about 4 2 .  

If the excitation is mechanical the symmetry of the equations indicates that 
condition (9) must be replaced by 

h < v. (9') 

Since v < A for real liquids, condition (9) indicates that magnetic excitation 
should be used. 
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1 I I 
0 1 2 

Dimensionless width measured from the centre point of the section 

FIGURE 3. The effect of width in the case of a channel: profiles of H across the central 
plane 2 = 0 a t  the first resonance for different values of E when RJR, = 1. Boundary 
valueH = 1. A = 0.1. N = 0. 

3. Apparatus 
The most readily available liquid conductors are mercury, sodium-potassium 

alloy, and heated sodium. If a strong first resonance is to be produced, an 
acceptable maximum value of A + N is about 0.1. Using these liquids in a mag- 
netic field of 1.0 Weber/m2, this figure is obtained with half depths of 196, 19.5 
and 5.6 em, respectively. Sodium was therefore chosen. 

Mechanical excitation being ruled out because for sodium v < A, the simplest 
possible method of magnetic excitation was ad0pted.t The sodium was contained 
inside a torus lying in a strong magnetic field parallel to its axis, and waves were 
generated by means of alternating current supplied to a coil around the torus. 
An advantage of this arrangement was that the sodium could be sealed once and 
for all inside the container. 

t The method of excitation used by Lehnert (Lehnert 1954) depended on the electric 
conductivity of the disk, and was essentially magnetic. 
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The container (figures 4 and 5) was designed to fill a space 20cm deep and 
60 cm in diameter. It was made by welding together sections of stainless-steel 
sheet. This material was selected for its strength, resistance to sodium, non- 
magnetic behaviour, and relatively low electrical conductivity. Nevertheless, 
the conductivity was not so low that currents induced in the walls could be 
ignored, and in order to reduce this complication sheet only 1.2mm thick was 
used. The container was quite flexible and needed to be well supported. To 
ensure good welds a t  the rims its upper and lower faces were dished. It was 

Toroidal exciting winding wrapped around the outside 

2.5 cm &am. plug 
carrying search coil 

/ 

Clearance space filled 
with argon 

/ Magnet iron 

Heating windings 
and lagging 

0.6 cm Syndanio Magnet iron 
plate 

Dished lower face 
of the container 

I 
Sodium to a depth 
of 17.5 cm at 120°C 

(Dimensions outside the steel) 

FIGURE 4. The container. 

filled under an atmosphere of argon, and a clearance space 0.6 cm deep was left 
at  the top to help allow for expansion and contraction of the sodium. It was 
sealed at a temperature of 120°C. Experiments were conducted at the same 
temperature to prevent the container being deformed as a result of a pressure 
difference across its walls. At this temperature the sodium occupied a section 
17-5cm deep with an outer radius of 27-4cm and an inner radius of 3.9cm. 
The sodium was heated by three resistance elements wound around the outer 
circumference of the container. These were connected to separate phases of the 
a.c. supply so that they produced no magnetic effect. To reduce the loss of heat 
Syndanio plates were placed in the dished faces, and asbestos cord was wound 
outside the heating elements. The temperature was measured by a thermocouple 
at  the inner circumference. 

A small search coil 1-9cm in diameter enclosed in a stainless-steel case was 
set at  the centre of the fluid section facing around the circumference, supported 
by a stalk from the sealing cap. In addition a large search coil was wound around 
the whole section outside the container walls, but under the heating elements, 
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enclosing an area 19.6 cm deep, with an outer radius of 27.6 cm and an inner 
radius of 3-7 cm. The e.m.f. induced in these coils thus gave respectively anindica- 
tion of the field at the centre and of the average field through the whole section. 
No provision was made for measuring the fluid velocity. The exciting coil, which 
was wound outside everything else, was designed to carry a current which would 
approximate as closely as possible to a current sheet. It consisted of 20 sectors 
of copper sheet insulated with fibreglass and connected in series. 

FIGURE 5. Sodium container before being lowered into the magnet 
(top of magnet yoke removed). 

The complete container was lowered on fibreglass tapes into the cavity 
of a specially constructed magnet (figure 5) which provided the fixed axial 
component of the field along which waves could travel. The magnet consisted 
simply of a coil sandwiched between two flat steel slabs separated by spacer 
pieces which also provided the return path for the field. With slabs of sufficiently 
high permeability this arrangement is equivalent to a slice out of a long solenoid, 
and it was found to give a field uniform within the tolerances of manufacture, 
f 3 yo. To expose the cavity the complete lid of the magnet was removed by 
means of a crane in the laboratory roof. The magnet coil was not cooled, and its 
temperature rose sufficiently rapidly for it to be difficult to maintain the current 
constant when the field was raised above 0-7 Weber/m2, although 1.0 Weber/m2 
could be produced for a short period. The complete magnet weighed 8.4 ton. 

Current to generate waves was fed to the exciting coil from a 100 W variable- 
frequency oscillator through a matching transformer. A measured resistance 
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was placed in series with the exciting coil, and the p.d. across this used to indicate 
the current. This signal was compared in magnitude and phase with the signal 
from one or other of the search coils by means of a Tektronix twin-beam oscillo- 
scope. Signals from the small central search coil had first to be passed through a 
pre-amplifier . The combination of the pre-amplifier and the oscilloscope amplifier 
could be calibrated by means of a standard square wave from a source inside 
the oscilloscope, accurate to & 3 %. 

1500 - 

for the wall effect 
- 

1000 - 
Corrected according 

----- 

Corrected according 
to estimate (b )  

I I I I I J 

0 0.50 1 -0 1 *5 
B, (Weber/mS) 

and without corrections for the wall effect. 
FIGURE 6. M at the first resonance for the central search coil calculated with 

4. Calculation of performance 
Using complex numbers to represent the magnitude and phase of alternating 

quantities, we suppose that an e.m.f. V is induced in one or other search coil 
when the system is excited by the application of a current I .  Then a convenient 
way of measuring the performance is in terms of the coupling M between the 
search coil and the exciting coil, defined by 

V = h M I .  

In free space M is the mutual inductance and is real, but in the presence of sodium 
M contains a phase factor. The main difficulty in estimating M is to allow for 
currents induced in the container walls. It is possible to make an estimate 
assuming 

(a) that the walls are completely insulated from the sodium, or 
( b )  that all the walls of the container are in contact with the sodium, with 

no contact resistance. 
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Estimate (a). Where the walls are completely insulated from the sodium, we 
let 0 be the flux when unit total exciting current links the torus. CD can be calcu- 
lated by integrating term by term the expansion for H given by equations (7),  
and adding a contribution from the clearance space above the sodium. Then, if 
I ,  is the total current linking the torus applied in the exciting coil, I the total 
effective exciting current linking the torus after subtraction of the wall current, 
and R the resistance of the wall circuit, 

I = I ,  - (iwOI/R), 

Using this result it  is possible to calculate H for a given applied current I ,  and 
so to obtain an estimate of M for each search coil. 

Estimate (b ) .  Where all the walls of the container are in contact with the sodium, 
with no contact resistance, the sides (parallel to the axis) and the faces (per- 
pendicular to the axis) may be expected to act almost independently, because 
of the free flow of current into and out of the walls. Conducting sides improve 
the performance by absorbing part of the transverse current associated with the 
waves, and in the limit of perfectly conducting sides the situation becomes the 
same as for an infinitely wide region. Conducting faces inhibit the performance 
by carrying currents acting against the exciting current, and in the limit of 
perfectly conducting faces the situation becomes a pure skin-effect at the sides. 

With conducting sides only, the equations can be solved, neglecting viscosity, 
with separated variables by means of an expansion of eigenfunctions depending 
on 2. On the assumption of completely independent action of the sides and faces, 
an estimate was obtained by this procedure that in the rdgime of the experiments 
the effect of the sides should be less than 2 %. When this contribution is neglected, 
it becomes possible to solve the equations for a container with conducting faces 
by the method of $2. Where F is the ratio of the wall thickness to the half depth 
of the fluid, A, the dimensionless electric diffusivity of the wall material and 

whence I = I,/{( 1 + iwCD)/R). 

a; = iQ/ ( iQ + Aon2), k; = (iQ/A,) +n2, 

S, = Ak,/A,k,, S, = Ak2/A0ko, 

equations (7)  have to be modified to 

1 + (a,/a) (sech k, F - 1)) (c, cos k,Z/sin k, - c, cos k,Z/sin k,) 
c,(cot k, - s1 tanh k, F )  - c,(cot k, - sz tanh k, F )  

G = ax((  

Using this formula it is again possible to obtain an estimate of M .  
Since the top face of the container was separated from the sodium by the 

clearance space while the other walls were in contact with it, neither estimate 
can be exact. Each is incorrect not only in the boundary conditions assumed for 
H ,  but also in the condition assumed for U at the free surface, which should be 
aU/aZ = 0. However, since v < A, the error introduced by this second incorrect 
assumption should be small, and one can expect that the actual behaviour will 
be somewhere in between what is predicted by estimates (a) and (b ) ,  which should 
represent limits for the possible performance. 

According to either estimate the wall effect proves to be important in the 
regime of the experiments only at the fist  resonance, and not at other frequencies. 
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The reduction in performance at the first resonance increases quite rapidly as 
the fixed component of the field is increased because of the increase both in the 
resonant magnification of the alternating component of the field, and in the 

700 

600 

500 

400 

200 

100 

I I I I I I I 
0 50 100 150 

Frequency (c/s) 

FIGURE 7. Comparison of measurements with calculated curves for the central search 
coil. Field = 0.650 Weber/mz; h + N  = 0.0495; x , 0 ,  measurements; __ , calcu- 
lated curves. 

resonant frequency. Figure 6 shows the reduction in \MI at the fist resonance 
according to the two estimates for the central search coil. Because of the wall 
effect, when the fixed component of the field exceeds 1.0 Weber/m2, the per- 
formance ceases to increase and finally declines. 
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In  all the calculations the properties of sodium at 120 C were assumed to be 
h = 0.825 x 10-lm2/s, v = 0.677 x 10-6m2/s, 

and of stainless steel h = 0.565m2/s. 
In every case the first 20 terms of the expansion were summed. For the central 
search coil M was calculated simply by multiplying H at the centre of the 
section by the area of the coil. For the full-section coil it was necessary to add to 

p = 0.93 x 103kg/m2, 

- 

- 

4 
v 

-90 
i2 

- 180 

I I I I I I I 
0 50 100 150 

Frequency (cis) 
FIGURE 8. Comparison of measurements with calculated curves for the full section search 
coil. Field = 0.650 Weber/m2; A + N  = 0.0495; x , 0 ,  measurements; - , calcu- 
lated curves. 

the contribution from the sodium a contribution from the walls and the space 
inside and outside the walls between the sodium and the search coil. This con- 
tribution was estimated to be 2.0,uH. 

5. Results 
In  each test the frequency was varied while the axial magnetic field was held 

constant within the error of observation, giving a constant value of A +  N. 
Enough current was applied in the exciting coil to create small disturbances 
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only: the ratio of the alternating component to the fixed component of the field 
was never more than 0.007 anywhere in the section. 

Results obtained using the central and the full-section search coils respectively 
are presented in figures 7 and 8. Each figure shows measured values of I M I and 
arg M at different measured values of the frequency in a field measured to be 
0.65 Weber/m2, giving A + N = 0.0495. In  each figure, the estimates (a) and (6 )  
of the dependence of M on the frequency a t  this field strength are also presented 
for comparison. It can be seen that, in addition to a strong first resonance a t  the 
fundamental frequency, a weak second resonance was obtained at three times 
the fundamental frequency. In  free space M would be 70mpH for the central 
search coil, 15.6pH for the full-section search coil. The results for the central 
search coil indicate that at the centre the alternating component of the field 
reached a peak magnitude 9.6 times the magnitude of the field that would have 
been generated in free space by the exciting current. 

Account should be taken of possible errors of about _+ 5 yo in the measurements 
/MI and arg M ,  .t 2 Yo in the measurement of the frequency, and _+ 5 % in the 
measurement of the vertical field. Account should also be taken of possible 
errors in the conductivity, density and dimensions assumed in the calculations. 
Of these the most important was likely to have been a possible error of about 
- + 2 % in the conductivity of the sodium, due to inexact control of the tempera- 

ture, apart from any error due to impurities. In  this light the agreement between 
the measurements and the calculations is satisfactory. The values of /MI 
measured at the first resonance lie well between the estimates (a )  and (b ) .  The 
slightly high values of I M I measured at the first resonance, and the low values 
measured at the second resonance, in the case of the central search coil, would be 
consistent with a contribution from the flux linking its leads. Since it was im- 
possible to gain access to this coil once it had been encased, its leads were not 
twisted for fear of damaging the insulation. 

The prediction that standing waves producing a strong resonance could be 
generated by this apparatus was thus well confirmed. Experiments to generate 
travelling waves are also being conducted. 

This work was done with the support of the U.K. Atomic Energy Authority. 
Cambridge University’s electronic calculating machine was used for the numerical 
calculations. I wish particularly to thank Dr J. A. Shercliff for his guidance, and 
Dr M. D. Cowley and Mr G. E. Middleton for their valuable advice. A pilot ex- 
periment to demonstrate the generation of waves inside a torus by means of 
currents in a toroidal winding was performed a t  Cambridge in 1953 by Dr 
Shercliff, but was unsuccessful because the scale was too small, and because 
sodium-potassium alloy was used instead of sodium. 
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